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Rostain J.C., Balon N. Recent neurochemical basis of inert gas narcosis and pressure effects.  Undersea 
Hyperb Med 2006; 33(3):197-204. Compressed air or a nitrogen-oxygen mixture produces from 0.3MPa 
nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a 
hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic 
gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported 
the lipid theory. However, recently, protein theories are in increasing consideration since results have been 
interpreted as evidence for a direct anaesthetic-protein interaction. The question is to know whether inert 
gases act by binding processes on proteins of neurotransmitter receptors. Compression with breathing 
mixtures where nitrogen is replaced by helium which has a low narcotic potency induces from 1MPa, the 
high pressure nervous syndrome which is related to neurochemical disturbances including changes of the 
amino-acid and monoamine neurotransmissions. The use of narcotic gas (nitrogen or hydrogen) added to a 
helium-oxygen mixture, reduced some symptoms of the HPNS but also had some effects due to an additional 
effect of the narcotic potency of the gas. The researches performed at the level of basal ganglia of the rat 
brain and particularly the nigro-striatal pathway involved in the control of the motor, locomotor and cognitive 
functions, disrupted by narcosis or pressure, have indicated that GABAergic neurotransmission is implicated 
via GABAa receptors. 

INTRODUCTION

All mammals including man exposed 
to increasing pressure of breathing gas 
mixtures show disturbances at the level of the 
central nervous system, which differ according 
to which gas is used. In Man, compressed 
air or compressed nitrogen-oxygen mixtures 
produce from 0.3 MPa, nitrogen narcosis 
(1). When nitrogen is replaced by a gas less 
narcotic than nitrogen such as helium, the 
breathing mixture induces from 1 MPa the 
High Pressure Nervous Syndrome (HPNS) 
(2).

INERT GAS NARCOSIS

1 - Nitrogen narcosis
When men are exposed to pressures of 

air higher than 0.3 MPa, they exhibit the signs 
and symptoms shown in Table I.

Table 1. Signs and symptoms of nitrogen narcosis in 
man from 0.3MPA (3 bars, 4 ATA).

When laboratory animals are exposed 
to compressed air or to increased pressures of 
nitrogen-oxygen, they also present signs and 

NITROGEN NARCOSIS IN MAN 

Temporo - spatial disorientation 

Memory troubles 

Euphoria 

Hallucinations 

Mood changes 

Impaired neuromuscular coordination 

                                                     Psychomotor and intellectual decrements 
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symptoms of a narcotic type for pressure higher 
than 0.8 to 1 MPa.  Behnke et al. (3) have 
related the phenomenon to the narcotic potency 
of nitrogen that is 79% of air.  Similar signs and 
symptoms have been observed by inert gases 
other than nitrogen but they vary according 
to the narcotic potency of the gas.  From the 
numerous attempts that have been made to 
correlate the narcotic potency of helium, neon, 
argon, krypton and xenon to physical properties 
it seems that the most satisfactory correlation, 
is afforded by lipid solubility (Table 2).

According to the lipid solubility 
hypothesis, three gases are more narcotic than 
nitrogen: xenon is anaesthetic at atmospheric 
pressure (4, 5, 6, 7, 8), krypton causes dizziness 
(4, 6) and argon will be narcotic about twice 
the pressure of nitrogen (1, 9). Three other 
gases are less narcotic than nitrogen.  These 
are hydrogen which would be between two to 
three times less narcotic than nitrogen (10), 
neon which would be at least three times less 
narcotic than nitrogen (11, 12) and last, helium 
which is the least narcotic.

2 - Pressure effects and helium narcosis
Based on the lipid solubility hypothesis, 

the narcotic effect of helium would occur around 
400 m (1). However, pressure counteracts this 
weak narcotic potency according to the pressure 
reversal effect and the critical volume hypothesis 

(13).  The symptoms that occur are different 
from those observed in narcosis and they are 
called the High Pressure Nervous Syndrome 
(HPNS). The HPNS includes behavioural 
symptoms and electrophysiological changes 
which are described in Table 3.  It is generally 
considered that helium is not narcotic.

However, from recent data obtained 
during experimental dives with narcotic gases 
added to helium at great pressure (14, 15), there 
were mood changes or sensory hallucinations 
reported in some cases in helium-oxygen dives 
to pressure greater than 4 MPa (400m), which 
could be due to a narcotic effect of helium 
rather than a pressure effect (16, 17). Moreover, 
hallucinatory behaviour has been also reported 
in monkeys breathing a helium-oxygen mixture 
at pressures of 8 MPa and above (18, 19, 20), 
which could be due to the narcotic effect of 
helium at high pressure (20). 

 Origins and Mechanisms of Inert   
 Gas Narcosis
 Comparatively little is known about 
the cause and mechanisms of the signs and 
symptoms produce by inert gas breathing 
at pressure.  Although the carbon dioxide 
theory has been eliminated as the cause, the 
lipid theory has provided several hypotheses 
as to the possible mechanisms of inert gas 
narcosis. From the works of Behnke et al. (3), 

Gas Molecular 
 weight 

Solubility 
in  lipid 

Rank
(narcotic
potency)
Least narcotic 

He 4 0.015 1
Ne 20 0.019 2
H2 2 0.036 3
N2 28 0.067 4
A 40 0.14 5
Kr 83.7 0.43 6
Xe 131.3 1.7 7

Most narcotic 

Table 2. Molecular weight and lipid solubility of inert 
gases and their rank from the least narcotic to the most 
narcotic.

HIGH PRESSURE NERVOUS SYNDROME IN MAN
HELIUM - OXYGEN

up to 6.1MPa

BEHAVIORAL
SYMPTOMS

TREMOR
FASCICULATIONS, MYOCLONIA
DYSMETRIA
SOMNOLENCE
COGNITIVE IMPAIREMENTS
up to -20%

ELECTROPHYSIOLOGICAL
CHANGES

EEG: INCREASE IN SLOW WAVES,
DECREASE IN FAST ACTIVITIES

CHANGES  IN EVOKED POTENTIALS,
IN CORTICAL EXCITABILITY CYCLE

SLEEP: INCREASE IN STAGES 1 and 2
DECREASE IN STAGES 3 and 4, REM

HYPER-REFLEXIA

Table 3. Signs and symptoms of HPNS up to 6.1 
Mpa (610 msw)  with helium-oxygen-mixture.
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the nitrogen and inert gas theory suggested 
that there is a parallel between the affinity of 
a narcotic or anaesthetic gas for lipid and its 
narcotic potency. Consequently the traditional 
view was that anaesthetics dissolve in the lipid 
bilayer of the cellular membrane and expand 
its volume. Anaesthesia then occurs when the 
volume of a hydrophobic site is caused to expand 
beyond a critical amount by the absorption of 
molecules of a narcotic gas; if the volume of 
this site is restored by increasing pressure, then 
the anaesthesia will be removed (Fig. 1). The 
observation of this pressure reversal effect on 
general anaesthesia (13) that has been reported 
for different anaesthetics including inert gases  
has supported the lipid theory. 

Fig.1

This is the reason of the use of narcotic 
gases in a helium-oxygen mixture for deep 
diving such as nitrogen or hydrogen, to 
decrease the clinical symptoms of HPNS 
such as the tremor. With the helium-nitrogen-
oxygen mixture, depths of 650 and 686 msw 
were reached (21, 22) and several dives were 
performed between 450 and 600 msw with a 
reduction of many HPNS symptoms (Table 4) 
(2, 23, 24, 25).

Hydrogen is another inert gas which has 
been considered and used for deep diving (26, 
27, 28, 29, 30, 31, 32, 33), for several reasons. 
Hydrogen has a greater narcotic potency than 

helium, which may in accordance with the 
critical volume hypothesis reduce some of 
the symptoms of HPNS. It has also a lower 
density than helium and thus could be better for 
breathing. Brauer and Way (33) have established 
that its narcotic potency is in agreement with 
its lipid solubility. It is, however, explosive in 
mixtures of more than 4% oxygen.

In the past, several groups have studied 
the effects of hydrogen at pressure in man and 
in animals (27, 33; 35, 36, 37). The results 
have been contradictory. However, Edel et 
al. (38) and Fife (39) suggested that the use 
of hydrogen in diving could be beneficial (2). 
In the last twenty years, COMEX has carried 
out several experiments with hydrogen in 
mice, rats, monkeys and men (40, 41). In 
human divers, significant narcotic sensations 
which were different from those reported with 
nitrogen, were reported from 240 metres, when 
breathing hydrogen oxygen mixtures. 

Experiments performed in hydrogen-
oxygen mixtures (HYDRA VII, IX) or in 
hydrogen-helium-oxygen mixtures (HYDRA 
V, VI, X) have shown narcotic effects of a 
psychotropic type which occur when the partial 
pressure of hydrogen is higher than 2.5 MPa. 
Indeed, psychotic like disorders have been 
observed in some subjects, which consisted of 
hallucinations, mood disturbances, agitation, 

HIGH PRESSURE NERVOUS SYNDROME
HELIUM – NITROGEN - OXYGEN

up to 4.5 MPa

BEHAVIORAL
SYMPTOMS

SOMNOLENCE
COGNITIVE IMPAIREMENTS
around – 10%

ELECTROPHYSIOLOGICAL
CHANGES

EEG: INCREASE IN SLOW WAVES,
DECREASE IN FAST ACTIVITIES

CHANGES  IN EVOKED POTENTIALS,
IN CORTICAL EXCITABILITY CYCLE

SLEEP: INCREASE IN STAGES 1 and 2
DECREASE IN STAGES 3 and 4, REM

HYPER-REFLEXIA

Table 4. Effects of addition of nitrogen (5%) in the 
helium-oxygen-mixture on signs and symptoms of 
HPNS.

Non specific mechanismsNon specific mechanisms

Hypothesis Hypothesis ::

The narcotic troubles are attributed to the solubility of the gaThe narcotic troubles are attributed to the solubility of the gas in the s in the 
lipidiclipidic part of the membranes which induced their expansion; in part of the membranes which induced their expansion; in 
contrast, pressure reduced them.contrast, pressure reduced them.

Narcotic gases
Atmospheric
pressure

Pressure
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delirium and paranoid thoughts (42, 43). These 
results indicated that pressures of hydrogen 
higher than 2.4-2.5 MPa may induce narcosis 
and are consistent with the work of Brauer et al. 
(10) and Brauer and Way (33) which predicted 
hydrogen narcosis around 2.5 and 3.0 MPa. 
However, the use of helium-hydrogen-oxygen 
mixtures with a partial pressure of hydrogen 
which did not exceed 2.5 Mpa reduces the 
clinical symptoms of HPNS (Table 5) and a 
depth of 701 m has been reached using this 
mixture (17, 20).

The reduction or even the suppression 
of some clinical symptoms obtained by narcotic 
gases added to a helium-oxygen mixture 
supports the lipid theories.  However there 
were also other effects recorded with some 
symptoms of HPNS which indicat that the lipid 
theory is insufficient to explain alone the effects 
of pressure and inert gases at pressure.

Recently, protein theories have been 
proposed due to results obtained from some 
experiments with inhalational anaesthetics 
which have been interpreted as evidence for a 
direct anaesthetic-protein interaction (44, 45, 
46, 47). The question is whether inert gases do 
exert binding processes on proteins at raised 
pressure. Data obtained by Abraini et al. (48) 
with two inert gases (nitrogen and argon) and 
an anaesthetic gas (N2O) seem to indicate that 

inert gases bind directly to a modulatory site of a 
protein receptor and act as allosteric modulators. 
The results clearly showed whatever the inert gas 
used, the pressure required to produce a 100% 
loss of righting reflex increased significantly 
as the compression rate increased. The rate at 
which compression was applied influenced the 
anaesthetic potencies of these inert gases in a 
sigmoidal fashion rather than a linear fashion as 
the lipid theory would suggest.  The sigmoidal 
curve indicates a gas-protein interaction. The 
gas could bind to modulatory sites of protein 
receptors, producing conformational changes 
and thereby make channel opening more or less 
favourable (Fig 2). 

Fig. 2.

Recently, neurochemical studies have 
been carried out on the effect of inert gas 
narcosis at the level of the basal ganglia, and 
particularly at the level of the nigro-striatal 
pathway. These structures are implicated in the 
regulation of motor, locomotor and cognitive 
processes which are disrupted by inert gas 
narcosis and HPNS. 

The studies performed by differential 
pulse voltametry at the level of the striatum 
with carbon multifiber electrodes have shown 
(49, 50, 51, 52):
1 - A decrease of dopamine when rats are 
exposed to increased pressures of nitrogen, 
argon, or to an anaesthetic gas such as the 

HIGH PRESSURE NERVOUS SYNDROME
HELIUM – HYDROGEN - OXYGEN

up to 4.5 MPa

BEHAVIORAL
SYMPTOMS

COGNITIVE IMPAIREMENTS
less than 5%

ELECTROPHYSIOLOGICAL
CHANGES

EEG: INCREASE IN SLOW WAVES,
DECREASE IN FAST ACTIVITIES

SLEEP: INCREASE IN STAGES 1 and 2
DECREASE IN STAGES 3 and 4, REM

Table 5. Effects of addition of hydrogen  (up to 2.5 
MPa) in the helium-oxygen  mixture on the signs and 
symptoms of HPNS. 

Hypothesis Hypothesis ::

The troubles related to narcosis and to pressure could be attribThe troubles related to narcosis and to pressure could be attributed uted 
to a binding with proteins of the membranes (neurotransmitter to a binding with proteins of the membranes (neurotransmitter 
receptors).receptors).

Specific mechanismsSpecific mechanisms

NeurotransmitterNeurotransmitter receptorsreceptors

NarcoticNarcotic gasesgases PressurePressure
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nitrous oxide.
2 - An increase of dopamine when rats were 
exposed to helium pressure.
These results demonstrated, at least at the level 
of the stiatal DA, an opposing effect of pressure 
and narcotic gases.

Other studies performed by 
microdialysis at the level of the striatum have 
shown in addition to an increase of dopamine 
with increasing pressure of helium, an increase 
of serotonin, glutamate, and aspartate but with 
different kinetics (53, 54, 55, 56, 57).  The 
same studies performed with nitrogen have 
shown a decrease of dopamine and glutamate, 
an increase of serotonin and no change of the 
level of aspartate (58, 59, 60).  Moreover, 
microdialysis and differential pulse voltametry 
studies have indicated that dopamine at the 
striatal level is also decreased when rats are 
exposed to increase pressures of argon (51, 52), 
and nitrous oxide (51, 52, 61, 62).

GABA neurotransmission is one of the 
processes implicated in these changes from the 
use of agonists of GABAA or GABAB receptors 
which have demonstrated changes when 
injected in the substantia nigra reticulata (SNr) 
or substantia nigra pars compacta (SNc) (63, 
64, 65).

The injection of 1nM of muscimol 
(agonist GABAA) in the SNr at atmospheric 
pressure did not induce changes in DA release 
in the striatum. In contrast, with helium oxygen 
pressure, the injection of the same dose of 
muscimol blocked the increase of DA induced by 
pressure (65, 66).  At atmospheric pressure, the 
injection of 10 nM of baclofen (agonist GABAB) 
in the SNr induced a 40% decrease of striatal 
DA release. With helium pressure, the decrease 
of DA release produced by baclofen persisted. 
The motor and locomotor hyperactivity (LMA) 
one of the HPNS symptoms in the rat, which is 
correlated to the change of striatal DA release, 
is reduced by the activation of the GABAB 
receptor and increased by the activation of the 

GABAA receptors (65, 66).
Consequently, the activation of GABAB 

receptors in the SNr decreased both dopamine 
and motor and locomotor hyperactivity by 
the inhibition of the nigro striatal pathway 
(NSP) and the thalamo cortical pathway and 
suggests the implication of these receptors in 
the regulation of the NSP and the development 
of LMA

The activation of GABAA receptors 
inhibits directly the NSP and consequently 
produces a decrease of striatal dopamine 
but induces also a desinhibition of the nigro-
thalamic pathway which induces an activation 
of the thalamo-cortical pathway and an 
activation of LMA.  Consequently, helium 
pressure may act by the stimulation of GABAA 
receptors of GABA neurons of the SNr which 
produces both a desinhibition of dopaminergic 
neurons of the nigro-striatal pathway and of 
glutamatergic neurones of the thalamo-cortical 
pathway which also induces an increase of 
striatal DA and of LMA.

CONCLUSION

In conclusion at pressure, our results 
suggest a change in the sensibility of the GABAA 
and GABAB receptors in the SNr, and in the 
SNc, with a greater response by the GABAA 
postsynaptic receptors on the GABAergic 
nigrothalamic pathway in the SNr and in the 
GABAergic interneurones of the SNc.

Alternatively, the similarity between 
the effects obtained with GABA injection 
(decrease of DA and LMA) and those obtained 
with nitrogen suggest that nitrogen acts directly 
on the GABAA receptors of the dopaminergic 
neurons of the NSP and produces a decrease 
of DA and consequently of the motor and 
locomotor activities.

The results obtained with pressure and 
narcotic gases would be the consequence of a 
balance or an imbalance between the effects 
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of pressure on the GABAergic nigrothalamic 
pathway and the effects of narcotics gases 
on GABAA receptors of the dopaminergic 
nigro stiatal pathway. The opposing effects 
of pressure and narcotic gases on GABAA 
receptors could be due to different receptor 
subunit compositions (Fig 3).

Fig. 3

These recent results at the neurochemical 
level give new indications on the development 
of inert gas narcosis and of the high pressure 
nervous syndrome. The disruption of GABA 
neurotransmission is one of the aspects of the 
mechanisms implicated in these symptoms 
and serotonin or glutamate neurotransmission 
with NMDA receptors (Fig 3).  Other systems 
which could play a role in the occurrence of 
inert gas narcosis from microdialysis studies 
have indicated changes in their release at the 
level of striatum and that studies on HPNS have 
indicated a potentiation of NMDA receptors 
(55, 56, 57, 67).
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