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1548,1992.-Probabilistic models and maximum likelihood es- 
timation have been used to predict the occurrence of decom- 
pression sickness (DCS). We indicate a means of extending the 
maximum likelihood parameter estimation procedure to make 
use of knowledge of the time at which DCS occurs. Two models 
were compared in fitting a data set of nearly 1,000 exposures, in 
which MO cases of DCS have known times of symptom onset. 
The additional information provided by the time at which DCS 
occurred gave us better estimates of model parameters. It was 
also possible to discriminate between good models, which pre- 
dict both the occurrence of DCS and the time at which symp- 
toms occur, and poorer models, which may predict only the 
overall occurrence. The refined models may be useful in new 
applications for customizing decompression strategies during 
complex dives involving various times at several different 
depths. Conditional probabilities of DCS for such dives may be 
reckoned as the dive is taking place and the decompression 
strategy adjusted to circumstance. Some of the mechanistic im- 
plications and the assumptions needed for safe application of 
decompression strategies on the basis of conditional probabili- 
ties are discussed. 

bends; mathematical models; risk management; inert gas ex- 
change 

EXPERIENCE has shown that decompression sickness 
(DCS) becomes more common, but seldom becomes a 
certainty, when certain limits are exceeded. Rapid 
ascents from long stays at great depths are more apt to 
give rise to DCS than slower ascents from short stays at 
more shallow depths. However, sometimes the risky dive 
and decompression may be undertaken with no unto- 
ward results, and occasionally symptoms of DCS are 
seen in usually safe dives. Accordingly, probabilistic mod- 
els have been used to predict the probability of DCS in 
various circumstances (10, 13, 14, 16, 18, 19). 

In the probabilistic models used so far, the probability 
of the occurrence of DCS for the entire dive was calcu- 
lated without regard for the time at which the symptoms 
occurred. We now have data for which the time of onset 
of symptoms of DCS is known at least approximately. 
We wish to introduce this additional information in a 
likelihood estimation procedure, with the expectation 
that this refinement will provide sounder estimates of 
the unknown parameters of the model. In addition, we 
hope that some insights may be gained into plausible 
mechanisms leading to symptoms when information 

about the time of the symptoms is used. The models we 
use have functional forms suggested by notations com- 
monly used in survival or failure time analysis (3). At any 
time T, during or after the dive, the probability P(s), for 
an individual to be free of DCS symptoms is related to 
the probability of his having suffered DCS by that time 

P(dT = 1.0 - P(DCS), (1) 

Pi is sometimes called the survivor function. If no 
DCS has occurred, then we define the probability of suf- 
fering DCS during a short ensuing time interval, dt, as r 
X dt, where r is the risk function or hazard function (3). 
Because r X dt is a probability, r cannot be negative. 
Freedom from DCS symptoms until time T requires sur- 
viving (integrating) all DCS risk incurred up to that time. 
The survival function is the probability of not experienc- 
ing DCS before time T 

(2) 

The instantaneous risk is determined by the mechanisms 
giving rise to the terminal event of the probabilistic pro- 
cess. For the decay of a radioactive isotope, for example, r 
is a constant that is characteristic of the particular iso- 
tope. Patient survival after surgery often is characterized 
by an r that is large immediately after surgery (immedi- 
ate postoperative mortality), declines gradually, and 
then follows a course that will vary with the nature of the 
risks at those later times. Aging corresponds to a func- 
tion r that increases with time. So if the greatest risk of 
DCS occurs immediately after a decompression step, r 
should be at its highest level at that time and then decline 
with time until the next decompression step. Such a risk 
function might be expected if DCS were triggered imme- 
diately after the occurrence of bubble nucleation, be- 
cause bubble nucleation depends on instantaneous su- 
persaturation even more strongly than a linear function 
(15). If, on the other hand, it takes a long time for the risk 
to develop after a decompression step, then r might rise, 
reach a peak, and then decline. If DCS depended on bub- 
ble growth to a certain size, r might have such a shape 
(11). In the long run, we expect to find more occurrences 
of DCS at times when r is large than at times when it is 
small. If r provides a satisfactory summary of the hazard 
process, then DCS should not occur at all when r is zero. 

The probability of not developing DCS sometime dur- 
ing or after the dive is expressed as the integration of the 
risk over the entire history of the dive and recovery. 
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Therefore different definitions of r can produce the same 
integrated risk and thus the same prediction of overall 
safety. The records used in earlier modeling of the proba- 
bility of DCS showed only that DCS occurred or that it 
did not occur, so we used a value of T large enough to 
encompass all occurrences of DCS, typically 24 h after 
the end of the dive. Because this integral may be the 
same for different shapes of r, our previous models were 
not sensitive to the shape of r and could not offer reliable 
estimates of the time at which DCS was likely to occur. 

Now we have more information about the time of DCS 
onset. We know a time, T,, when the diver was definitely 
free of DCS symptoms, and a later time, T,, when he 
definitely did have symptoms. (The finite time interval 
between TI and T, acknowledges the uncertainty in es- 
tablishing the exact onset time of DCS). The observation 
then has two parts: no DCS until TI and then occurrence 
of DCS during the T,-T, time interval. We then can cal- 
culate the probability of both events as the joint probabil- 
ity of surviving symptom free until T, and then experienc- 
ing DCS during the interval T1-T2 

Pb,, 7 DCS,) = P(s),lP(Dw~l T2 

= exp (-JOYd#.Olexp(-J~rdt)l (3) 

Note that the probability of DCS in a finite T1-T2 inter- 
val is always smaller than the probability of DCS occur- 
ring at all ( TI = 0, T2 = long time). This decreased proba- 
bility offers a more severe test of candidate models for r, 
especially for the shape of r in the T,-T, interval. By 
using Eq. 3 and the data on time of onset that has become 
available to us, we hope to learn more about the shape of 
r. As our knowledge of the shape of r improves, it will be 
possible to consider new applications of Eq. 3. One appli- 
cation might be to obtain customized decompression 
strategies after complex diving procedures involving so- 
journs of various lengths at many different depths. 

MODELING 

We will use two different models. One will postulate 
that r will be highest immediately after arrival at a de- 
compression step; the other will allow for some delay 
between a decompression step and the evolution of the 
greatest risk of DCS associated with that step. 

A4odeL 1. In model 1, the instantaneous risk or hazard, 
rl, is proportional to the sum of the risks associated with 
each of two tissues. The washout curve for each tissue is 
described by simple exponential decay (“MEPC model” 
in Ref. 10, “model 3" in Ref. 18, “modeL 2" in Ref. 19. 

The relative supersaturation of two tissues is used to 
define the risk rl 

rI = rlA + rlB (4) 

where 

AA Pti, - Pam 
rlA = 1 Pam 

, with rlA 2 0 

. 

AB 
Pt1 

rig = 
B - Pam 

1 Pam 
, with rlB > 0 

where Pam is ambient pressure. The tissue pressures Pti 
refer only to nitrogen. Oxygen, carbon dioxide, and water 
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FIG. 1. Model behavior on a simple dive within a single tissue com- 

partment characterized by a single time constant. Area under rl and r2 
curves is proportional to the total probability of decompression sick- 
ness [P(DCS)] for this dive. By definition, risk (r) cannot be negative. 

vapor are ignored (13). Parameters AA, and AB, are 
scale factors for the two tissues. For example, if in a sin- 
gle tissue Pti-Pam was 0.2 ATA when Pam was 1 ATA 
and this condition was maintained for 100 min with a 
scale factor of 0.003 min-l, a P(DCS) of -6% would re- 
sult [I - exp (-0.003 X 0.2 X loo)]. Both rlA and rlB are 
constrained to be zero or positive, inasmuch as Pi 
must be a nonincreasing function of time. rI will drop to 
zero when calculated gas excretion decreases the tissue 
nitrogen partial pressures to below Pam. 

Model 2. Model 2 uses a similar set of parameters, but 
the risk is obtained from the integral of the relative su- 
persaturation 

r2 = rU r2B (5) 

where 

s 

t 

rM = AA 2 
0 

PtiA - Pam 
Pam 

ds, with rM > 0 

r2B = AB 
s 

t PtiA - Pam 
2 ds, with rm > 0 

0 Pam 

Both positive and negative values of the supersatura- 
tion are integrated, but because the risk, r2, is not allowed 
to be negative, the values of both rM and rm are again 
constrained to be positive or zero. The scale factors AA, 
and AB, (in units of min2) are expected to be consider- 
ably smaller because of the second integration. rl peaks 
just after a decompression step, whereas r2 reaches its 
highest value later. Figure 1 compares the behavior of the 
two models (simplified to a single tissue) on a simple dive 
with no decompression stops. It is seen that rI is greatest 
immediately after the pressure reduction and declines 
monotonically thereafter. By contrast, r2 increases until 
the supersaturation vanishes and then decreases there- 
after. 

Computations. The computational details for tracking 
Pti over a complicated pressure exposure and performing 
the appropriate integrations are tedious but straightfor- 
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ward. Some additional details have been published (18). 
Gas exchange takes place in two hypothetical well-mixed 
tissue compartments with time constants %A, %By %A, 

and r2B corresponding to models 1 and 2 and tissues A and 
B. The recorded dive profile is approximated by many 
pressure-time ramps in calculation of the entry and exit 
of nitrogen from the tissue. 

r = 0 before decompression begins 

r = constant after decompression begins 
(8) 

This we will refer to as our null model when making com- 
parisons with LL. Single tissue versions of Eqs. 4 and 5 
were also explored but did not fit well at all. 

The four parameters for each model (2 time constants 
and 2 scale factors) must be estimated from data. For the DATA 

estimation, we need the calculated probability of each 
outcome in the data. These can be obtained from Eqs. 
1-3. If the outcome was safe, it was safe over all time 

Evaluation of the models requires very well-docu- 
mented dives and outcomes. Data of 921 man-dives were 
obtained from unusually detailed computerized records 
of air diving trials at the US Navy Experimental Diving 
Unit (Panama City, FL) in 1984 and the Canadian De- 
fence and Civil Institute of Environmental Medicine (To- 
ronto) from 1978 to 1988. Description of the trials is avail- 
able in several reports (59% 89%. , Some statistical analy- 
ses of portions of these data have already been published, 

intervals during and 
posure for r to decay 
is sufficient 

long enough after the pressure ex- 
to zero. Usually 1 day after the dive 

if no DCS, P(OUTCOME) = exp (- J:24h rdt) (6) 

If the dive resulted in DCS, we need to distinguish 
whether we care only about the probability of occurrence 
or also abo ut the time interval in which symptoms ap- 

in which only the occurren .ce ( not the time) of DCS is 
used (19). Both sin gle (only one dive per day) and repeti- 
tive dive combinations are represented (Table 1). Only 
immersed trial subjects are included. In general they pear 
were exercising and usually a little cold. The pressure 
profiles were all reviewed. Inconsistencies were resolved 
by checking original records and logs. The dive profiles 
were then approximated for this analysis as ~32 pres- 
sure-time nodes, which kept the maximum deviation be- 

Occurrence Only 

if DCS, P(OUTCOME) = 1.0 - exp (- [+24hrdt) (7) 

tween recorded and approximated profiles cl.2 fsw for 
<33 s. Table 1 includes four cases of marginal symptoms: 

Time of-DCS (use Eq. 3) 

if DCS, P(OUTCOME) general1 .y mild fleeting pain, resolving spontaneously 
without treatm ent but definitely associated with the 
dive. For this report, marginal cases are treated as an 
outcome of one-half safe, one-half DCS. The presence of 
these few ambiguous cases does not seriously affect our 
conclusions. In other instances, the manner in which 
marginal cases are dealt with has had a greater effect on 
conclusions (13, 16). 

= exp (-~oT1rdt)[~.O-exp(-~~rdt)] 

Equation 7 is a special case of Eq. 3 in which Z’l is set at 
zero and T2 is >l day later. 

Using initial guesses for the scale factors (A’s) and 
time constants (T’S), we calculate the log-likelihood func- 
tion (LL) as the sum of the logs of P(OUTCOME) for 
each exposure in our data. The values of the unknown 
parameters that maximize the LL are chosen as the best 
possible fit of a model to the data; hence we use the term 
maximum likelihood (4). This fitting constitutes a cali- 
bration procedure for the model. We use a modified (1) 
Marquardt (7) nonlinear estimation program to vary the 
parameters estimated until the LL is maximized. We also 
use the slopes of the LL surface in the vicinity of the 
maximum to estimate the covariance matrix and hence 
obtain estimates of the precision of estimated parame- 
ters (4). A Marquardt search with these models seems to 
be rather efficient, but many different starting values of 
parameters are typically required to be convinced of con- 

Choice of times for the T,-T, interval presented diffi- 
culties. The onset of DCS is seldom a sharply defined 

TABLE 1. Characteristics of diving 

Single dives 

Depth 
Bottom time 
Decompression time 
Outcome 

Trials 
DCS 
Marginal 

50-265 fsw (avg = 126 fsw) 
3-244 min (avg = 60 min) 
2-290 min (avg = 77 min) 

727 
38 

4 

Repetitive dives 

Number of dives 
Depth 
Bottom time 
Decompression time 
Surface interval 
Outcome 

Trials 
DCS 
Marginal 

2, 3, or 4 
60-177 fsw 
17-66 min 
2-246 min 

60-180 min 

vergence to a global (vs. local) maximum LL. 
The actual value of a maximum LL is no more infor- 

mative than the sum of squared errors from a least- 
squares fit. However, just as ratios of sums of squared 
errors may be used in an analysis of variance, the ratio of 
likelihoods may be used to test hypotheses of interest. 
Likelihood ratio tests may be used to compa re different 
model .s if one of the models is obtainable as a special case 
of the more gen era1 model with constrai .ned parameters 
(4,16). A simplified model is one that considers risk to be 

194 
14 
0 

Man-dives 
DCS cases 
Marginal cases 

Total 

921 
52 (5.6%) 

4 (0.4%) equivalent at all times 
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60 
T2 DISTRIBUTION TABLE 2. Timing rules 

Time of Definite Symptoms (T2) 

TIME OF SYMPTOMS 

BEFORE SURFACING 

23 h after surfacing 
l-3 h after surfacing 
20 min to 1 h after surfacing 
<20 min after surfacing 
Before surfacing 

SURFACING to 10 min 

10 min to 30 min 

30 min to 1 hr 

1 hr to 2 hr 

2 hr to 3 hr 

3 hr to 4 hr 

recreation after ~2 h. Some of the consequences of Tl- 
T2 assignments are discussed below. 

4 hr to 8 hr 

8 hr to 24 hr 

AFTER 24 hr RESULTS 

0 4 8 12 16 20, 24 Evaluation of the models is summarized in Table 3. 

Latest Definitely Safe Time (Tl) 

2 h after surfacing 
30 min after surfacing 
10 min after surfacing 
Time leaving final stop depth 
Time leaving second 

previous stop depth 

TIME AFTER SURFACING (hr) The column labeled “Occurrence Only” uses the overall 
FIG. 2. Cumulative number of cases of DCS with increasing time 

after end of dive. In repetitive dives, time after surfacing is defined as 
the end of pressure exposure immediately preceding symptom onset. 

event. In many cases, there is a period of minutes to 
hours over which the diver notices a discomfort, or sore- 
ness, that later leads to a complaint sufficient to require 
medical evaluation a nd then recompression therapy. In 
other cases the diver may fal .l asleep feeling healthy and 
then awake with a pain hours later. The ambiguous time 
tends to be longer as the time of diagnosis becomes later 
after the dive. The records indicate that divers were 
nearly always quizzed about the time the symptom first 
became really noticeable, and their definite answers were 
selected as T2 - the time when DCS had definitely oc- 
curred. In a few cases we had to choose the time of start- 
ing recompression therapy. Figure 2 shows the distribu- 
tion of Tz in our data. The symptom reports are widely 
spread, from some before the diver emerged from the 
water to others occurring >l day later. Nearly half oc- 
curred 23 h after the dive. The 52 cases of DCS arose 
from 35 different dive profiles of a total of 921 man-dives. 
The lack of many DCS cases after any single dive profile 
prevented any attempt to directly judge an 
shape for the risk function, r. 

appropriate 

The choice of T,, the latest time at which DCS had 
definitely not occurred, might be made in several ways. 
One conservative choice is obvious: the beginning of de- 
compression. However, that would remove most time res- 
olution from the data and allow risk accumulated imme- 
diately after the dive to be used to predict DCS cases that 
occurred much later. A nother choice could be the time of 
the last medical exami nation eliciting no complaints, as 
was tabulated for a trial with several such examinations 
after the dive (13). However, these data were not ob- 
tained under conditions of regularly spaced medical ex- 
aminations. As a compromise judgment, the rules in Ta- 
ble 2 were adopted to choose a Tl. 

When more than a single dive was made, the assign- 
.ent rul .es we re applied to the latest dive. Of the rules, m 

the one with the most impact is the maximum 2-h period 
between the dive and Tl. That time roughly corresponds 
to a standard practice for those experimental dives in 
which test subjects were under medical surveillance after 
the exposure and, if symptom free, released to home or 

P(DCS) for the dive and subsequent 24 h for the likeli- 
hood function (Eq. 7), whereas the column labeled “Time 
of DCS” uses the probability of developing symptoms 
between Tl and T2 (Eq. 3). The magnitude of the likeli- 
hood function cannot be compared across columns be- 
cause they are measures of different events or outcomes. 

The Occurrence Only results show that models 1 and 2 
are each a much better description of the data than the 
corresponding null model. Likelihood ratio tests (4, 16) 
show statistically significant improvement (P < 0.001). 
This indicates that the inclusion of information into r 
about the history of the dive definitely improves the abil- 
ity to predict the probability of DCS. The maximum like- 
lihoods for the two models are very similar and should be 
considered equally successful. Even the parameter esti- 
mates are similar, with the data requiring time constants 
(7’5) near 40 and 700 min. (For those more accu stomed to 
half times, these are ~30 and 500 min.) As expected, 
scale factors are smaller in model 2 because of the addi- 
tional integration step. Parameter precision for both 
models is similar, with coefficients of variation (SE/par- 
ameter value) in the range of 20-40% for time constants 
and 3O-90% for scale factors. 

Column 2 (time of DCS) in Table 3 has no entries for 

TABLE 3. Parameter estimates 

Type of Data Occurrence Only Time of DCS 

r, min-’ 
LL 

rlA, min 
AA,, min-I 
?1B9 mln 

AB, , min-’ 
LL 

rM, min 
AA2, minh2 
rW, min 
AB,, mine2 
LL 

Null model 

3.91 x 1o-5 
-203.83 

3.99 x 1o-5 
-343.55 

Model 1 

39.8_t20 
1.5t0.3 x 1o-3 

732t210 
8.0+6.8 x 1O-3 

- 194.95 

Mode2 2 

37.5t13.4 59.5k7.4 
l.Ot0.3 x 1o-5 8.0t1.4 x lo+ 

624t230 871t84 
1.3tl.l x 1o-5 3.822.5 x 1O-5 

- 194.66 -292.04 

Values in models 1 and 2 are means + SE. r, constant risk factor; r, 
time constant for each model (I, 2) and tissue (A, B); A, scale factor for 
each model (I, 2) and tissue (A, B); LL, log-likelihood function. 
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FIG. 3. Exponential gas exchange kinetics on dive DDl936A. Solid 
line, ambient pressure; other lines, washin and washout of inert gas in 3 
possible compartments. Rate constants either much larger or much 
smaller than -60 min develop a less persistent, or no, supersaturation. 

model 1 because this model fails to fit the data. This is 
because no value for a time constant exists that allows 
for a nonzero risk as late as 2 h after two different dives 
in which DCS occurred. Model 1 fails also with one of the 
marginal cases, with onset >2 h after the dive. According 
to any parameter estimates we could find, these three 
cases of DCS should simply not have happened at the 
time they did. The reason model 1 was unsuccessful in 
accounting for the late cases of DCS is illustrated in Fig. 
3. For this exposure, a time constant TIA or Q of 60 min 
causes r1 to remain positive for ~55 min after the end of 
the dive, which is ~77 min on the time coordinates of 
Fig. 3. Faster time constants, like the 30-min example 
plotted, build up a higher Pti during the dive, but tissue 
nitrogen washes out to ~1 ATA partial pressure in ~55 
min. Longer time constants (e.g., 90 min) build up tissue 
nitrogen to a lesser extent so that rl again does not per- 
sist for 55 min. Because this was such a short dive, even 
longer time constants do not build up the tissue partial 
pressures high enough that a positive risk persists as long 
as 2 h. Therefore no time constant can maintain a posi- 
tive r, in this example >55 min after the dive. One diver 
reported symptoms after this dive at 10 min after the 
dive and another at -12 h after completion. Model 1 
finds this outcome to be impossible. 

We had no trouble in fitting the data with the symptom 
times in model 2. Its maximum LL is much better than 
the constant risk hypothesis (the null model). Time con- 
stants and scale factors are rather close to those esti- 
mated without the timing information, in most cases 
within 1 SE. Parameter precision is increased, especially 
in the case of the time constants for which SEs drop from 
approximately one-third to one-eighth of the estimated 
time constants or less. For the previous problem dive, 
Fig. 4 shows that the 59.7-min time constant maintained 
a positive r2 for 140 min after surfacing, with about one- 
tenth of the total risk incurred >2 h after leaving the 
water. 

Some more detailed information on model perfor- 
mance in predicting time of DCS occurrence is presented 

0 40 80 120 160 200 
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FIG. 4. Model 2 behavior on dive DD1936A. Tissue nitrogen pres- 
sure from 59.5-min time constant is shown similar to Fig. 2 (874-min 
time constant tissue never developed a supersaturation). Scale for r2 is 
arbitrary. 

in Table 4. Five different (outcome) time categories rela- 
tive to the surfacing time of the dive were constructed. 
All the 40 (38 actual and 4 marginal) single dive DCS case 
outcomes were allocated to those categories by appor- 
tioning their T,-T, intervals. Then the total predicted 
P(DCS) was summed over each time category for the 727 
single man-dives in the data. Table 4 shows that the null 
model fails to agree with the data by placing too high a 
predicted risk late after the dive. On the other hand, 
model 1 fails by placing too much predicted risk near the 
time of surfacing. Model 2 (evaluated with time of DCS 
onset data) agrees much better, usually within one or two 
cases per time category. The x2 test statistics in Table 3 
measure the rareness that random variation would lead 
to the tabulated levels of disagreement. The null model 
and modeZ 1 predictions can be positively rejected (P < 
0.001) as in disagreement with the data, whereas the 
modeZ 2 predictions cannot be rejected (P > 0.2). Repeti- 
tion of this exercise, including the repetitive dives (not 
shown), leads to a similar conclusion, although interpre- 
tation is clouded by arbitrary choice of “surfacing 
time” when multiple choices from the multiple dives are 
possible. 

DISCUSSION 

Models 1 and 2 were equally successful in predicting 
the occurrence of DCS despite quite different risk for- 
mulations. This lack of sensitivity to the shape of the risk 

TABLE 4. Predicted and observed 
DCS onset time intervals 

Predicted 

Time Category 

Model 2, 
Model 1, time 

Observed Null occurrence of DCS 

Before surfacing 6.3 3.9 13.6 5.8 
Surfacing to +30 min 4.9 0.9 11.6 2.9 
Surfacing +30 min to +2 h 8.5 2.6 8.5 12.5 
Surfacing +2 h to +4 h 10.6 3.4 3.7 11.3 
Surfacing +4 h to +l day 9.3 33.5 0.4 6.5 

X2 68.1 197.6 3.0 
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TABLE 5. Repetitive diving rules quences (so-called repetitive diving) in a similar fashion; 
however, the decompression from the first dive in the - 

Model 2, 
Model 1, Model 2, time of DCS 

occurrence occurrence conditional 

First dive, 50 fsw 
Second dive, 50 fsw, after 

20 min on surface 
Second dive, 50 fsw, after 

240 min on surface 

49 min 71 min 65 min 

0 min 8 min 26 min 

0 min 0 min 64 min 

Entries are times at stated depth allowed for P(DCS) to = 2% with- 
out decompression stops, i.e., the longest “safe” durations. 

sequence would almost inevitably need to be more conser- 
vative than if it were the only dive, because some of the 
total 5 or 1% risk would have to be allocated to the second 
(and subsequent) exposures. In addition to the proce- 
dures being difficult to implement (many dive combina- 
tions to tabulate), the model and parameters used would 
need serious evaluation against data from repetitive div- 
ing combinations. 

function also helps explain why differently shaped nitro- 
gen washout curves can achieve success. The single-ex- 
ponential gas exchange kinetics used here, double-expo- 
nential descriptions of compartment exchange (18, 19), 
and the nonlinear kinetics used elsewhere (10) can all fit 
the same DCS occurrence data well, even though none 
closely follows the kinetics found in actual gas exchange 
measurements (17). The use of symptom onset time will 
allow more sensitive comparisons among competing gas 
exchange theories. 

Model 1 failed by predicting that three cases of DCS 
could not have occurred as late as they did occur. Analy- 
sis of the data with the two models gives us statistical 
confirmation that DCS symptoms are not heavily clus- 
tered immediately after decompression steps but some 
symptoms seem to occur even after most of the gas has 
left the tissue. Such a result makes it unlikely that the 
symptoms are an immediate consequence of bubble nu- 
cleation (15) and suggests instead that symptoms arise 
only after the growth or persistence of a bubble for some 
reasonably long period of time. 

Model failure is critically dependent on the specific 
choice of ?‘1 and T,. If we had assigned a Tl of much less 
than 2 h after the dive in Figs. 3 and 4, model 1 would 
have predicted a low but nonzero probability for the oc- 
currence of DCS in the enlarged interval. On the other 
hand, if we had allowed Tl to be as late as +12 h, model 2 
would also have failed on several dives because risk 
would be zero that late. The sensitivity of these models to 
T, and T2 indicates that by keeping careful records of the 
time of occurrence of DCS, future data may be used to 
refine our understanding of mechanisms of DCS. Any 
proposed mechanisms will need to predict not only the 
occurrence but also the time of occurrence of DCS. For 
example, models predicting the occurrence of DCS long 
after surfacing might require gas washout kinetics slower 
than simple exponential tissue washout (2, 9-11, 18). 

APPLICATIONS 

Practical use of models that can successfully predict 
the actual time of occurrence of DCS should be placed in 
the context of models that can predict occurrence some- 
time during the 24 h after a dive. The latter can be used to 
rationally construct decompression tables with a known 
level of risk for a single preplanned dive, e.g., at a 1 or 5% 
chance of DCS (14). These tables could be useful but 
would be a bit constraining. What if a person wanted to 
perform a second, or even third, dive later? Procedures 
could be developed to preplan two- and three-dive se- 

Many diving situations would benefit from increased 
flexibility. Suppose you have performed one dive under 
conditions that bring you close to a selected limit of 
P(DCS), e.g., 1 or 5%. After several hours you do not 
exhibit symptoms of DCS and are considering another 
dive. You have passed through a period when DCS might 
have occurred, but it did not. With occurrence-only 
model formulations and calibrations, prudence would 
dictate that you do not fully believe the degree to which a 
hazardous interval has passed until the full integration 
period (e.g., 24 h) has elapsed. However, if the shape of r 
is better understood by occurrence-time fitting, belief in 
shorter time hazard accumulation can be strengthened. 
In fact, if the chosen r is a good approximation of DCS 
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FIG. 5. Conduct of repetitive dives by use of modeZ 2 without (A) and 
with (B) use of conditional probability. In A, a single dive to 50 fsw for 
71 min leads eventually to a total P(DCS) of 2% (dotted curve and scale 
at right). I f  diver returned to 50 fsw after 20 min on surface, only 8 min 
could be spent at depth to keep total P(DCS) from exceeding 2% (solid 
probability trace). A 2nd dive sought after 4 h on surface would not be 
allowed because full 2% P(DCS) has already been achieved. Same sce- 
nario in B, with parameters estimated from time of DCS data and 
decisions based on conditional probability. Here a 2nd dive after 20 min 
on surface is allowed for 26 min, with a 2% increase in P(DCS) allowed 
after commencing 2nd dive. If  2nd dive were performed after 4 h on 
surface, tissue pressure and r would be almost fully decayed, and 64 
min at 50 fsw would be allowed to achieve a conditional P(DCS) of 2%. 
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mechanisms, the P(DCS) accumulated after 1 h on the 
surface can be “forgotten” if that 1 h does not produce 
symptoms. 

This idea of fully believing the shape of r can be ex- 
pressed as conditional probability: what is the future 
chance of suffering DCS on the condition that I am free 
of symptoms now? The question is formally equivalent 

= 1.0 and putting TZ into the far to Eq. 3 in setting P(s), 
future, say 1 day later. 
probability is a rational 
diving. 

Implementation of conditional 
strategy to deal with repetitive 

An-example of conditional probability is given in Table 
5 and Fig. 5 with the models evaluated in Table 3. Rules 
are presented for a diver wishing a dive of the longest 
possible duration to 50 fsw requiring no decompression 
stops and allowing 2% chance of developing DCS after 
the dive. Depending on the model invoked, the longest 
“safe” duration is 49-71 min. Afterwards, he may wish to 
perform a second dive without decompression stops to 50 
fsw after waiting on the surface for 20 min or 4 h. With- 
out using conditional probability, Table 5 shows that he 
is greatly limited in allowed time or completely prohib- 
ited from the second dive. In other words, he cannot 
make both the first and second dives without exceeding 
the target DCS risk of 2% for the combination of dives. 
With model 1 it can be shown that no combination of two 
dives to the same 0 r deeper d .epth and immediate ascent 
has a lower P(DCS) than the first dive alone. Even with 
model 2, the allowed time on the second dive is curtailed, 
more so the longer the diver waits to start the second 
dive. Figure 5A shows how the two-dive combinations 
add up to the target 2% chance of DCS. 

However, at the start of the second dive, the diver may 
be allowed to run a risk on his second dive similar to that 
of his first; he is not as interested in his total risk expo- 
sure for the combination. If he is free of symptoms from 
his first dive, he can accept a new 2% risk of DCS for the 
second. Data in the last column in Table 4 and Fig. 5B are 
given on the basis of that condition. From the start of the 
second dive, whenever it occurs, a new 2% chance of DCS 
ensues. With model 2 parameters evaluated with time of 
DCS and under conditional probability, he is restricted in 
allowed time of the second dive, but the restriction gradu- 
ally disappears. As both Pti and r diminish, the diver’s 
status gradually and smoothly returns to his original 
state. 

If the shape of r is well known, it might be used to 
calculate conditional probabilities of proposed decom- 
pression strategies developed and adjusted during the 
dive itself. This would be particularly desirable in situa- 
tions in which a dive history involves many depths at 
various time intervals. Our present tables are really most 
reliable when the dive is not too complicated. Examples 
of complex dive patterns occur in military operations and 
in recreational diving. Any ad hoc decompression strat- 
egy using conditional probability is made on the assump- 
tion that the only history of the past that is required is 
accurately summarized by a knowledge of the inert gas 
remaining in the tissue and the current values of r and 
that the risk incurred in the future does not depend in 
any other way on the events of the past. If, for example, 
DCS depends simply on a gas bubble reaching a critical 

size (2, ll), and a second dive that reduces and perhaps 
eliminates the bubble in question is begun before that 
critical size is reached, then perhaps the assumption of 
independence is well founded and the future risk when 
decompression begins is calculable with the same risk 
function used on the first dive. Suppose, on the other 
hand, that DCS is caused by complement activation on 
the tissue-gas interface of the bubble (12). In this case, 
perhaps the risk of the second dive will not be character- 
ized only by the gas remaining in the tissue but also by 
the degree of complement activation and consumption. 
Second or complex dives with interspersed partial de- 
compression might then carry more or less risk than one 
could anticipate from a knowledge of gas burden and a 
risk function determined primarily from simple dives. 
Collection of data on repeat dives with accurately known 
ZJ and T, values and narrow T,-T, intervals should help 
us refine-the estimates of r and decide whether it is de- 
pendent only on the balance of gas remaining in tissue or 
on other factors as well. 

The model and parameters presented here are not yet 
sufficiently developed for general diving use. More data 
on the time of occurrence of DCS must be obtained. At 
least some of these data should involve complex dives 
with interspersed partial decompression, so that the reli- 
ability of using conditional probability to plan decom- 
pression strategies can be evaluated. The analysis pre- 
sented here provides a logical framework for model devel- 
opment and evaluation leading to real-time control of 
DCS risk in a complex diving situation. 
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