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Decompression theory - Bubble models 
 
ABSTRACT 
This page describes principles and theories about bubble generation and bubble growth in the scuba divers body and 
about the effect of bubble formation on decompression and decompression sickness (DCS, bends) in scuba diving. 
Whereas classical (neo-)Haldane theories are mainly empirical and only take dissolved gas into account, bubble theories 
intend to give a physical explanation of the effects of bubbles on decompression. Bubble theories take dissolved and free 
gas into account. Especially the Varying Permeability Model (VPM) and Reduced Gradient Bubble Model (RGBM) give 
good explanation.  
 

History 
In classic decompression theory according to Haldane and successors a certain amount of supersaturation of the divers 
tissue with dissolved inert gas is allowed. The divers tissue is divided in a number of hypothetical tissue compartments. A 
certain limit (M-value) is associated with each compartment to supersaturation levels of dissolved inert gas in the 
compartment (tissue tension). This theory suggests efficient decompression by pulling the diver as close to the surface as 
possible with constraint that in all tissue compartments the supersaturated tissue tension remains within the limits. By 
pulling the diver as close to the surface the pressure gradient between the supersaturated tissue tension and the pulmonary 
(or arterial) gas is maximized. This enhances the elimination of the excess gas in the tissue. This theory is mainly 
empirical and based on experiment. At the moment most diving tables and computers are based on this theory.  
Since the early days, diving has become more sophisticated by diving deeper and longer, the use of other breathing 
mixtures, etc. Some tech divers have made their own adaptations to the decompression schedules by inserting depression 
stops at greater depth ('deep stops', sometimes called 'Pyle stops' after Richard Pyle). These divers report feeling better 
when using these deep stops. This suggests that classic decompression theory fails in some situations and cannot be 
extrapolated to every diving situation. In order to gain insight in the principles of decompression, forming of bubbles 
during decompression has been studied for the last three decades. This has resulted in new theories like the Varying 
Permeability Model (VPM) by Yount et al. and the Reduced Gradient Bubble Model (RGBM). Bubble theories do not 
only take into account the dissolved gas (like the Haldane models), but also the free gas in the divers body. In this chapter 
we will have a look at some features of bubble theory. Lots of mathematics will be presented. The most important 
equations however, will be highlighted.  

Bubbles and surface tension 

Consider a small air bubble in a glass of water. For the 
moment we neglect the solubility of the air in water. The 
small amount of air within the bubble is surrounded by a 
surface. The surface consists of water molecules which 
are unbound to one side. An unbound molecule represents 
more energy than a molecule which is completely 
surrounded by other water molecules. A surface tension γ 
is associated with this surface between air and water. The 
surface tension is the amount of energy per unit of surface 
area and is expressed in J/m2 or N/m.  
A system will always try to minimize energy. Surface 
tension tends to minimise the bubble's surface. Hence, a 
bubble tends to collapse. However, collapsing a bubble 
decreases its volume. This will increase the gas pressure 
in the bubble (Boyle's law), until equilibrium is 
established: the internal pressure compensates the surface 
tension. The internal pressure due to the ambient pressure 
and surface tension is given by the Laplace equation:    

Figure 1: In equilibrium the internal pressure in the 
bubble is equal to the sum of the ambient pressure and 
the skin pressure due to the surface tension  
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 Pin = Pamb + Psurf = Pamb + 2γ/r  (1) 

r Radius of the bubble in m  

γ Surface tension in joule/m2 of N/m. The surface tension of water at 273 K is 0.073 N/m.  

Pin Pressure inside the bubble in N/m2=10-5bar  

Pamb Ambient pressure in N/m2=10-5bar  

Psurf Pressure due to the surface tension in N/m2=10-5bar  
From this equation we learn that the smaller the bubble, the higher the pressure inside. You can experience the radius 
dependency of the pressure by trying to blow a balloon (bubble principles perfectly apply to a balloon up to the point 
where the balloon explodes). To get the first blow of air into the balloon (small radius) is a hell of a job, whereas it 
becomes easier if the balloon becomes larger.  

Bubbles and diffusion 
When we have a bottle of beer things get a bit more complicated (Usually the opposite holds, but when we look at the 
bubbles it might be). Bubbles in beer contain Carbon Dioxide. There is also Carbon Dioxide in solution in the beer. 
Carbon Dioxide can diffuse from the solution into the bubble or vice versa, depending on the partial pressure of the 
Carbon Dioxide in solution and in the bubble. If we assume that the bubble consist of only Carbon Dioxide, the Carbon 
Dioxide pressure in the bubble is given by equation (1) and depends on the radius of the bubble.  
We define the partial pressure of the Carbon Dioxide in solution in the beer to be Pt. (If we regard the bottle of beer as a 
primitive model for a diver, we could call it 'tissue tension'). If the bottle is closed, the partial pressure of the Carbon 
Dioxide in solution Pt is in equilibrium with the ambient pressure Pamb. If we assume there is only Carbon Dioxide gas in 
the (closed) beer bottle, the beer is saturated with Carbon Dioxide and Pt will be equal to Pamb (we can neglect hydrostatic 
pressure). The pressure in the bubble Pin will be higher than Pt due to the surface tension. Gas from within the bubble will 
diffuse into solution and the bubble will collapse. So every bubble will collapse eventually due to this gradient Pin-Pt. This 
is why in a closed bottle of beer there are no bubbles and there is no foam. However, if we open the bottle things will be 
different. The ambient pressure will drop, whereas the value of Pt remains the same, at least for the moment. In this case 
Pt is larger than Pamb: the beer is supersaturated with Carbon Dioxide.  
Given an ambient pressure Pamb and the partial pressure Pt of the Carbon Dioxide in solution, there is a critical bubble 
radius rmin at which the pressure inside the bubble Pin equals Pt. The critical radius can be found by substituting Pin by Pt in 
equation (1):  
 rmin= 2γ/(Pt - Pamb)  (2) 
For bubbles which size exceeds this critical size the pressure Pin in the bubble is smaller than the partial pressure Pt of the 
Carbon Dioxide in solution. Carbon Dioxide will diffuse from solution into the bubble. The bubble will grow. For 
bubbles smaller than the critical size, the opposite holds: gas from the bubble diffuses into solution and the bubble shrinks 
until it collapses completely. Bubbles at the critical size are in equilibrium, though it is an unstable equilibrium. This is 
depicted in Fig. 2.  

 
Figure 2:  

So every bubble with a radius larger than rmin will start to grow. When we look at our opened bottle of beer we see 
bubbles becoming visible and heading for the surface, where they form foam. If you scrutinize a bubble you'll see that it 
grows during ascent. Its diameter might have doubled or tripled when it arrives at the surface. You might think this is due 
to Boyle's law . However it takes an ascent of several meters for a bubble to double its diameter. The growth of the bubble 
is due to the diffusion described above.  
As an example, we can calculate critical radii for Spa Barisart Soda (6.4-8.0 g/l Carbon Dioxide). The pressure in the 
bottle specified by Spa is shown in next table (dependant on temperature). The partial pressure Pt of the Carbon Dioxide 
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in solution is roughly that value. If we open the bottle the ambient pressure Pamb drops to 1 bar, whereas the partial 
pressure Pt remains at the high value. Using equation (2) we can calculate the critical radius rmin.  

Temperature 
(°C) 

Pressure (bar=105 
Pa) rmin (µm) 

15 3 0.73 
20 3.75 0.53 
25 4.5 0.42 
30 5.3 0.34 
35 6 0.29 

 

40 7 0.24 

The Varying Permeability Model 
According to previous chapter, in a supersaturated 
situation any bubble exceeding a critical size rmin will 
grow (and will disappear by floating to the surface) and 
any bubble smaller than this size will collapse. In a 
normal non-supersaturated situation, rmin approaches 
infinity. Any bubble will collapse. So we do not expect 
any bubbles around after a while. You might expect that if 
no initial bubbles are around, there is no bubble to grow 
on supersaturating the liquid. The tensile strength of water 
is estimated on 1000 atm, making immense 
supersaturations possible, before bubbles (voids) are 
created. If no initial bubbles would be present in the water 
making up the diver, a diver could easily dive to a 
kilometer depth and pop up to the surface without any 
problems. In practice, this is not the case. Bubbles form 
on modest decompression as low as 1 atm. Here comes in 
the Varying Permeability Model (VPM). The VPM was 
initially defined by Yount et al. [2] in order to give a 
quantitative explanation on the formation of bubbles in 
decompressed gelatin [1] (as model for divers tissue). 
Later on, they showed this model can be used to calculate 
dive tables as well [3], [4]. In next paragraphs we will 
have a look at the gelatin theory. Later on we will apply 
the theory to diving.  

 
Figure 3: Skins of varying permeability are the base of 
the VPM  

The gelatin experiments 

Experiments on gelatin have been performed, by David 
Yount and other researchers [1]. The advantage of gelatin 
over water is that any bubble appearing during 
decompression gets trapped and won't flow to the surface. 
In this way they can be observed and counted. Yount 
applied the rudimentary pressure of Figure 4 to gelatin 
samples: Gelatin samples were made at ambient pressure 
Pamb=P0 of 1 atm. The samples were rapidly compressed 
in a 100% Nitrogen atmosphere to Pamb=Pm. The samples 
were left at a pressure Pamb=Ps=Pm for more than 5 hours. 
This period was long enough to fully saturate the sample 
at this pressure, so that Pt=Ps. After this, the samples were 
rapidly decompressed to a final pressure Pamb=Pf. After 
this decompression, bubbles formed in the sample. The 
number of bubbles were counted. Pressure changes are 
regarded fast: during the changes no gas is taken up or 
removed from any bubble.  

 
Figure 4: Rudimentary pressure schedule applied to the 
gelatin samples by Yount.  
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Basic concepts 

 
Figure 5: Pressures acting on the surface of the bubble.  

According to the VPM, in aqeous media like water and 
gelatin stable gaseous cavities are present. They are called 
nuclei. Radii range from a few 1/100 µm up to around 1 
µm. Any nucleus in water larger will flow to the surface 
and disappear. Whereas an ordinary bubble with these 
radii would collapse under normal conditions (no 
supersaturation), these nuclei appear to be exceptionally 
stable and have a long life. Yount proposed this stability is 
due to an elastic skin made up of surfactant, as shown 
schematically in Figure 3. Surfactant consists of 
(hydrophobic) surface active molecules, which are 
aligned. During the compression stage, these skins are 
permeable for gas up to a pressure of around 8 atm. 
Diffusion through the skin takes place. The pressure Pin of 
the gas in the nucleus is equal to the dissolved gas tension 
Pt in the surrounding liquid. Above this pressure, the skin 
becomes impermeable. Upon decompressing (reducing 
the ambient pressure) the skins are regarded permeable. 
The skin gives rise to a 'surface compression' Γ which 
opposes the regular surface tension γ of the water/air 
surface, as shown in Figure 5:  

 
 Pin + 2Γ/r = Pamb + 2γ/r  (3) 
The skin tension Γ is not constant but ranges from 0 to a maximum γc, which is called the 'crumbling compression'. The 
idea is that small variations of the size of the nucleus can be supported by varying the distance between the molecules in 
the skin. This gives rise to varying Γ. This situation is described by equation (3) and is referred to as the small-scale 
situation. In this equilibrium situation and in the permeable region, due to diffusion the internal pressure Pin is equal to the 
tension Pt. In the samples (no hydrostatic pressure, 100% Nitrogen) Pt equals Pamb. So Pin = Pt = Pamb. In this situation Γ 
equals γ, according to equation (3).  

Upon compressing and decompressing, variation of the 
size of the nucleus becomes to large to be supported by 
varying distances between molecules. Surfactant 
molecules have to be expelled from or taken up into the 
skin in order to compensate for the area decrease resp. 
increase of the nucleus. This is schematically shown in 
Figure 6. The skin is surrounded by an amount of 
surfactant, which is not part of the skin. This amount acts 
as a reservoir, taking up or supplying surfactant molecules 
from or to the skin. The reservoir molecules are not 
aligned and cannot support a pressure gradient. Γ takes its 
crumbling value γc in this large-scale situation. Yount 
proposes two derivations of the VPM [2]: one from a 
thermodynamic point of view and one from a mechanical 
point of view.  

 
Figure 6: The large-scale situation: variation in the size 
of the nucleus result in expelling molecules from the skin 

In the original sample there is a initial distribution of nuclei with radii distributed according to some function f(r0). (The 
'0' in r0 refers to the initial situation). On applying the pressure schedule, it is assumed that all nuclei with a radius larger 
than some minimal initial radius r0

min will grow into bubbles. The number of bubbles N that occur is given by the 
integration of f(r0) from r0

min to infinity.  
 N = ∫ f(r0) dr0 , integration from r0

min to ∞  (4) 
Applying this theory to a diver, it might be assumed that the severity of Decompression Sickness (DCS) might be related 
to this number of bubbles, which occur after decompression. Hence, r0

min becomes an indication for the severity of DCS.  
It is assumed that no nuclei are extinguished or created during application of the pressure schedule. Furthermore it is 
assumed that the ordering of nuclei is preserved: if one nucleus is larger than an other one, this is still true after a pressure 
change (ordering hypothesis). At the end of the pressure schedule there is a new distribution of radii g(rf) and a new 
radius rf

min above which all nuclei will grow into bubbles. Note: a nucleus with radius r0
min ends up as a nucleus with 

radius rf
min after application of the presure schedule. The aim of next VPM calculations is  
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1. To define the allowed number of bubbles by defining r0
min  

2. To find a relation between rf and r0 (and hence between rf
min and r0

min)  
3. To find the relation based on rf

min which governs the bubble formation on decompression.  
4. To calculate the resulting restricting relations for the pressure schedule, given the value of r0

min and hence, the 
number of resulting bubbles after application of the pressure schedule.  

Thermodynamic equilibrium 
From a thermodynamic point of view the left-hand side of equation (3) represents the skin pressure PS:  
 PS = Pin + 2γc/r  (5a) 
Γ has been replaced by the large-scale value γc. Similarly the right hand term of equation (3) represents the reservoir 
pressure PR:  
 PR = Pamb + 2γ/r  (5b) 
In the large-scale situation transport of surfactant is not described by setting PR equal to PS but by the requirement that the 
electrochemical potential in the skin and reservoir are equal. The electrochemical potential ξ is given by  
 ξ = µ + kTln(ρ) + pv + Zeψ  (6) 

ξ  Electrochemical potential  

µ  Pure chemical potential  

k  Bolzmann constant  

T  Absolute temperature in K  

ρ  Molecular concentration or number density  

p  Static pressure  

v  Active volume occupied by one surfactant molecule  

Ze  Effective charge of one surfactant molecule  

ψ  Electrostatic potential  
In the reservoir we have  
 ξR = µR + kTln(ρR) + PRv + (Zeψ)R  (7a) 
and in the skin we have  
 ξS = µS + kTln(ρS) + PSv + (Zeψ)S  (7b) 
Requiring ξR is equal to ξS and substituting PS and PR by the values in equation (5a) resp (5b) results in:  
 Pin + 2γc/r - β = Pamb + 2γ/r  (8a) 
in which  
 β = [kTln(ρR/ρS) + (µR - µS) + (Zeψ)R - (Zeψ)S]/v  (8b) 
Equations (8) can be used to calculate the changes in radii after applying a pressure step. We have a look what happens 
when applying the pressure schedule of Figure 4 to the sample. At the beginning of the pressure schedule Pamb=P0. The 
pressure of the gas in the nucleus is  
 Pin=Pt0=Pamb=P0  (9) 
Just before compression equation (8a) is:  
 P0 + 2γc/r0 - β0 = P0 + 2γ/r0  (10a) 
After the pressure rise to the pressure P* where the skins becomes impermeable equation (8a) reads:  
 P0 + 2γc/r* - β* = P* + 2γ/r*  (10b) 
Substracting equation (10b) from (10a), assuming β0=β* and rewriting it a bit result in:  
 2(γc-γ)[(1/r*)-(1/r0)] = P*-P0  (11) 
We continue to compress rapidly from P* to Pm. Since the skin is not permeable now, the pressure in the nucleus varies 
with its radius according to Boyle's law (PV = P 4/3 π r3 = constant):  
 Pin = Pt

* r*3/r3  (12) 
In this equation r* is the radius of the nucleus at the beginning of the impermeable process. Pt

* is the corresponding 
dissolved gas tension, which is equal to P0. So after the compression to Pm we have:  
 P0 (r*/rm)3 + 2γc/rm - βm = Pm + 2γ/rm  (13) 
Assuming βm=β*=β0, subtracting equation (13) from (10b) and rewriting a bit we end up with:  
 2(γc - γ) [(1/rm) - (1/r*)] = Pm - P* + P0 [1 - (r*/rm)3]  (14) 
We now have relations (equation (11) and (14)) between the radius rm of the nucleus after compressing and the radius r0 
prior to compression. The saturation phase (Pamb=Ps) that follows saturates the liquid so that finally the dissolved gas 
tension Pts=Ps. We might expect that the radius of the nucleus increases to its original value (see the the note in the 
'Mechanical Equilibrium' section). However, this has not been observed. So we assume  
 rs=rm  (15) 
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In fact the radius restores quite slowly, but for the moment equation (15) holds. Prior and after decompressing (which is 
fully permeable) equation (8a) reads:  
 Ps + 2γc/rs - βs = Ps + 2γ/rs  (16a) 
resp.  
 Ps + 2γc/rf - βf = Pf + 2γ/rf  (16b) 
Assuming βf=βs (not equal to βm, subtracting equation (16b) from (16a) and rewriting a bit result in:  
 2(γc-γ)[(1/rf)-(1/rs)] = Pf-Ps  (17) 
So we now have a relation between all radii of the nucleus during the entire profile. A nucleus with radius r0 ends up as a 
nucleus with radius rf through a number of stages (r*, rm, rs) defined by the relations (11), (14), (15) and (17).  
We now define the criterion for bubble formation, which is given the Laplace equation:  
 Pin-Pamb = Ps - Pf ≥ 2 γ/rf

min  (18a) 
There is no reference to Γ or γc in this equation. We assume the skin of the nucleus to be permeable. So the skin does not 
restrict bubble formation: gas simply flows through the skin and forms a gas shell outside the skin. If the skin should not 
be permeable as has been proposed by others some tearing strenght or tearing tension Γ=-γT is introduced. The bubble 
forming equation becomes:  
 Pin-Pamb = Ps - Pf ≥ 2 (γ + γT)/rf

min  (18b) 
By combining equation (11), (14), (15), (17) and (18a) we find the VPM equations.  
For the ever-permeable region Pm≤P*:  
 Pss

min = 2γ(γc-γ)/ (r0
min γc) + Pcrush (γ/γc)  (19) 

For the permeable-impermeable-permeable situation Pm>P* we find:  
 Pss

min = 2γ(γc-γ)/ (r0
min γc) + [Pm - P0(r*/rm)3] (γ/γc)  (20) 

In these equations we have the crushing pressure  
 Pcrush = (Pamb - Pt)max = Pm - P0  (21) 
and the supersaturation pressure  
 Pss

min = (Pt - Pamb)max = Ps - Pf  (22) 
Equation (20) can be written as:  
 Pss

min = 2γ(γc-γ)/ (r0
min γc) + (γ/γc) (P* - P0) + (γ/γc) (Pm - P*) / [1 + (r~/B)]  (23a) 

The parameters r~ and B are defined as:  
 r~ = r*(r*/rm)  (23b) 
 
 B = 2(γc - γ) / { P0[(r*/rm) + 1 + (rm/r*)] }  (23c) 

Mechanical equilibrium 
The other way the VPM is derived is by looking from a mechanical point of view. Changes in nuclear radius can be 
calculated by the equation proposed by Love, which reads (in the VPM form, [2]):  
 2(Γ - γ)(∂r/r2) = ∂Pin - ∂Pamb  (24) 
In the 'permeable' region of the VPM, Pin remains constant and equal to Pt. Here ∂Pin is 0. For large-scale variations in the 
'permeable' region of VPM equation (24) reads  
 2(γc - γ)(∂r/r2) = ∂Pamb  (25) 
In the 'impermeable' region, Pin is given by equation (12). Differentiated it reads:  
 ∂Pin = - (3 Pt

* r* 3/r4) ∂r  (26) 
For the large-scale variations in the impermeable region, equation (24) reads  
 [2(γc - γ) + 3 Pt

* r* 3/r2] (∂r/r2) = ∂Pamb  (27) 
Together with the Laplace equation (18a) and the assumption of equation (15), equation (25) and (27) can be used (by 
integrating) to derive the VPM equations (19) and (20): equation (11) and (17) can be obtained by integrating equation 
(25), equation (14) can be obtained by integrating equation (27). The derivation is given in [2].  
Note: During the compression phase ∂Pin is zero in equation (24). Assuming the pressure schedule takes place in the 
permeable region, integration of (24) from Pamb=P0 to Pm results in:  
 2(γc - γ) (1/rm - 1/r0) = Pm - P0  (28) 
During the saturation phase that follows ∂Pamb is zero in equation (24). Integration of (24) from Pin=P0 to Ps results in:  
 2(γc - γ) (1/rs - 1/rm) = P0 - Ps  (29) 
Adding equation (29) to (28) results in rs=r0, assuming Pm=Ps (in fact in the non-permeable situation or a situation in 
which Pm≠Ps we could derive the same result, though it takes some more derivation). This suggests that the nucleus is 
fully restored to the original size during saturation. The effect of the crushing is lost in this situation. However, this is in 
sharp disagreement with experiment. Further indication is given by special cases in which a pressure spike is present at 
the start of the schedule (Figure 4), so that Pm<Ps. In this cases the bubble count only depend on Pss and Pcrush and not on 
Ps! Hence, the assumption defined by equation (15) is made: rs=rm.  

Equilibrium considerations 
In this section we will consider some implications from the equilibria discussed above.  
Rewriting equations (10a), (10b), (13), (16a) and (16b) gives us:  

 
β0 = 2(γc - γ) / r0  
 
β* = 2(γc - γ) / r* - (P* - P0)  

(30) 
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βm = 2(γc - γ) / rm - [ Pm - P0 (r*/rm)3 ]  
 
βs = 2(γc - γ) / rs  
 
βf = 2(γc - γ) / rf - (Pf - Ps)  

(We recall our assumptions that β0=βm=β* and βs=βf.) According to equation (8b) β is independent of radius. However, 
according to equation (30) β0 appears to be a function of r0. Assuming that β0 is constant for all nuclei at Pamb=P0 we 
obtain an remarkable prediction that γc increases with increasing r0:  
 γc = γ + r0β0/2  (31) 
Another consideration stems from mechanical equilibrium: Small scale equilibrium is given by equation (3):  
 Pin + 2Γ/r = Pamb + 2γ/r  (32) 
All properties of the skin and the reservoir are incorporated in the small scale skin compression Γ. The equation can be 
obtained from (8a) by setting:  
 2Γ/r = 2γc/r - β  (33) 
Substituting the β values of equation (30) in (33) results at the respective ambient pressure values Pamb=P0, P*, Pm, Ps and 
Pf in:  

 

Γ0 = γ  
 
Γ* = γc - (γc - γ) r*/r0  
 
Γm = γc - (γc - γ) rm/r0  
 
Γs = γ  
 
Γf = γc - (γc - γ) rf/rs  

(34) 

A plausible small scale/mechanical equilibrium criterion for bubble formation is that Γf is less than or equal to zero. This 
results in:  
 2(γc-γ)/rs ≥ 2γc/rf  (35) 
Substituting this in equation (17) results in the Laplace equation (18a) as used for the thermodynamic derivation.  
Equation (34) shows that during the compression Γ increases. During saturation Γ 'relaxes' to its value prior to 
compression γ, keeping rm constant. During decompression Γ drops to 0, the point at which bubble formation just starts.  

Consequences of the VPM relations 

Plotting Pss vs. Pcrush 
Most conveniently, equation (19) is plotted as Pss

min vs. Pcrush. In these plots, Pss
min-Pcrush pairs resulting in the same 

number of bubbles (and hence, the same DCS morbidity) form straight lines.  

Diver vs. gelatin 
The VPM originally was developed to quantitatively explain bubble formation in gelatin during decompression [2]. The 
ultimate goal was to gain understanding of decompression sickness. To apply VPM to a diving situation it first was 
suggested that decompression sickness (DCS) symptoms were related to the number of bubbles. Say, severe symptoms 
occur at a number NDCS of bubbles in some tissue. Given the radial distribution f(r0), equation (4) defines a r0

min. If all 
nuclei with a radius equal or larger than this radius grow into bubbles, we end up with NDCS bubbles (and some bad DCS). 
Given a dive to some depth resulting in an ambient gradient Pcrush, equation (19) gives the maximum allowed gradient 
Pss

min resulting in the NDCS bubbles.  

The VPM relations 
The VPM relations (19) and (20) define the maximum allowed gradient between the ambient pressure and the tissue 
tension. In other words: it defines the minimum allowed ambient pressure Pamb, given the tissue tension Pt. In a diving 
situation it defines the depth the diver is allowed to ascend given the tissue tension. The relation should be applied to each 
tissue compartment of the diver.  
The initial compression (defining Pcrush) is important for Pss

min. During this stage nuclei are crushed to a smaller size, 
making them less active in bubble formation. The secret lies in equation/assumption (15), which states that no 
regeneration of the bubble size takes place during saturation. It implies that a descent during a dive should be as quick as 
possible, the deepest part of the dive should be at the start of the dive and deeper dives should precede shallower dives in 
a repetitive dive situation. These facts have been empirically found during a century of decompression research.  

Not a 100% Nitrogen saturation dive 
The derivation of the VPM assumed 100% Nitrogen and fully saturated gelatin. If we apply the equations to a non-
saturating diving situation in which the Nitrogen fraction is less than 100% (for example air, containing 79% Nitrogen), 
the VPM equations (19) and (20) can be regarded as a conservative restriction to the dive profile.  
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Applying VPM to diving 
In this section we will apply the VPM to a diving situation and describe a method to generate diving tables. Whereas the 
VPM theory of previous sections applies to a special situation of fully saturated gelatin in a 100% Nitrogen atmosphere, 
situations during diving are different. The assumption that the severity of DCS is proportional to the absolute number of 
bubbles leads to very safe diving tables, not covering all of the conditions of modern diving tables and often leading to 
unacceptable long decompression periods. The VPM was reformulated, as described in this section, to fit it with 
conventional diving tables. Conventional diving tables were regarded as valid measurements. We will follow the 
derivation of Yount [3]. During this derivation we assume only one inert gas. Later on we will place remarks on using 
more inert gasses (Trimix, etc). Another assumption is the dive takes place in the 'permeable' region of the VPM.  

The reformulated VPM 
The derivation of the theory below is based on a number of more or less ad hoc assumptions. The most important 
assumptions concern the relationship between decompression symptoms and the amount of free gas (bubbles) in the 
divers tissue:  

• There is an amount of bubbles Nsafe which can be tolerated by the divers body, independent of all circumstances 
(like tissue tension, degree of supersaturation, etc). The initial critical radius corresponding to this number is r0

min 
(equation (4)).  

• The actual number of bubbles Nactual may be higher than Nsafe as long as the total volume V of all free gas always 
remains below a critical value Vcrit. This is called the 'critical-volume hypothesis'. A initial radius r0

new smaller 
than r0

min is associated with this number.  
• The volume of free gas V inflates at a rate proportional to Pss (Nactual - Nsafe), where Pss is the saturation Pt-Pamb.  

The first of these assumption agrees with physiological studies, which state that the lungs are able to continue functioning 
as a trap for venous bubbles to a certain degree. From this assumption can be deduced that the rate at which the body can 
dissipate free gas by exchange in the lungs is proportional to both the supersaturation pressure Pss and Nsafe.  
The assumption defined by equation (15) is fine tuned according to observations: the radius rm slowly regenerates during 
saturation instead of remaining unchanged, as stated by equation (15). The regeneration is exponential, governed by a 
regeneration time constant τR:  
 rs(tR) = rm + (r0 - rm) (1 - exp (-tR/τR))  (36) 

rs Nuclear radius just prior to ascent and decompression (m)  

rm Nuclear radius after compression by Pcrush (m)  

r0 Nuclear radius before descent (m)  

tR Regeneration period: time from start of dive up to start of ascent and decompression (min)  

τR Regeneration time constant (min)  
If we wait long enough the crushed nucleus will end up with its initial radius prior to compression r0.  
In contrast with other decompression models, VPM takes the effect of other gasses (water vapor, Oxygen, Carbon 
Dioxide) into account in calculating the tissue tension:  
 Pt_total = Pinert_gasses + Pother_gasses  (37) 

Pt_total Tissue tension  

Pinert_gasses Sum of the partial pressures of the dissolved inert gasses  

Pother_gasses Pressure due to water vapor, Oxygen and Carbon Dioxide. Yount specifies a nearly 
constant value of 102 mm Hg (corresponding to 0.136 bar) for inspired partial Oxygen pressures up 
to 2 atm [5]  
The supersaturation is now defined as:  
 Pss = Pt - Pamb  (38) 
The reformulated VPM now consist of the following steps:  

1. Specify the parameters defining the VPM: surface tension γ, the crumbling compression γc, the minimum initial 
radius r0

min, the regeneration time constant τR and a composite parameter λ. The latter is related to the critical 
volume Vcrit. The parameters are the same for each compartment.  

2. Calculate the initial allowed supersaturation that is just sufficient to probe r0
min and that results in Nsafe bubbles. 

The equation for this is:  
 Pss

min = 2 (γ/γc) (γc - γ)/rs(tR)  (39) 
In fact, this is an enhanced equation (19), taking nuclear regeneration into account. In this equation the 
regenerated radius rs(tR) is given by equation (36). Since the VPM parameters are the same for each tissue 
compartments, this initial allowed supersaturation gradient will be the same for each compartment.  
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3. Calculate a decompression profile, using this Pss
min. The total decompression time defined by the profile is tD.  

4. Calculate a new allowed supersaturation gradient Pss
new using:  

 

Pss
new = 1/2 [b + (b2 - 4 c) 1/2]  

where  
b = Pss

min + λ γ / [γc (tD + 1/k)]  
 
c = (γ/γc)2 λ Pcrush / (tD + 1/k)  

(40) 

In these equation is k=ln(2)/τ, where τ is the half-time of the tissue compartment. This result in a larger allowed 
supersaturation gradient Pss

new. Of course, this step is repeated for each tissue compartment.  
5. Perform a number of iteration of step 3-4, until tD and Pss

new converge. Of course, occurrences of Pss
min are now 

substituted by Pss
new.  

After the iterations we end up with a more severe decompression profile and a Pss
new corresponding to a new initial critical 

radius r0
new, which is smaller than r0

min. This new radius results in a larger number of bubbles Nactual and a maximum 
volume of free gas approaching Vcrit.  

More inert gasses 
In some (tech) diving situations, other gas mixtures are used consisting of more than one inert gas (for example Trimix, 
containing Oxygen, Nitrogen and Helium). In next remarks we assume Helium and Nitrogen to be the inert gases.  

1. For each gas, the VPM parameters should be specified. For each tissue compartment a half-time for each gas 
should be specified.  

2. For each gas, the allowed supersaturation gradient should be calculated using the method in previous section. In 
this case the supersaturation gradient for Helium is Pss_He and for Nitrogen is Pss_N  

3. If Pt_He and Pt_N are the Helium and Nitrogen tissue tensions, the total tissue tension is given by:  
 Pt_total = Pt_He + Pt_N + Pother_gasses  (41) 

4. The allowed supersaturation gradient is given by the weighted average:  
 Pss_total = Pt_total - Pamb = (Pt_He Pss_He + Pt_N Pss_N) / (Pt_He + Pt_N)  (42) 

Derivation 
In this section we will derive the new VPM equation (40). The allowed supersaturation gradient Pss

min as given by 
equation (19), (20) and (39) can be applied to diving as a safe-ascent criterion. Whereas they can be derived directly from 
VPM, the derivation of Pss

new in equation (40) involves a number of ad hoc assumptions.  
Assumption 1: The total volume of free gas in the divers body should never exceed a critical volume value Vcrit at any 
time t (not during the dive, nor thereafter).  
Assumption 2: The rate at which the free gas inflates is proportional to Pss(t)(Nactual - Nsafe). In this equation Pss(t) = Pt(t) - 
Pamb(t).  
Assumption 1 and 2 result in the decompression criterion:  
 ∫0t Pss(t) (Nactual - Nsafe) dt ≤ αVcrit  (43) 
In this equation is α a proportionality constant. This criterion should hold for any t. To minimise the decompression time 
tD, the ≤ sign is replaced by the = sign.  
Assumption 3: The actual number of bubbles Nactual and the number of bubbles always allowed Nsafe are determined by 
the initial decompression stop and remain constant thereafter. The decompression criterion now reads:  
 αVcrit = (Nactual - Nsafe) ∫0t

max Pss(t) dt  (44) 
In this equation tmax is the value of t at which the integral reaches the maximum value.  
Assumption 4: The decompression profile is chosen so that Pss(t) remains at constant value Pss

new during the ascent period 
tD and decays exponentially to zero thereafter (at the surface). This is in agreement with Assumption 3: Pss(t) is always 
positive and never exceeds its initial value Pss

new. This initial value is the maximum value defining Nactual. The latter 
remains constant thereafter. The exponential decay to zero is a conservative approximation: according to Yount&Lally 
[5] humans are 'inherently unsaturated' when equilibrated at atmospheric pressure by about 54 mm Hg (0.072 bar). 
Eventually, Pss(t) will become negative by this amount.  
Due to Assumption 4 and the exponential decay, the integral of equation (44) reaches it maximum value in the limit as 
tmax approaches ∞. The criterion for decompression now becomes:  

 
αVcrit = (Nactual - Nsafe) [ ∫0t

D Pss
new dt + ∫tD∞ Pss

new e-k(t-t
D

) ]  
 
αVcrit = (Nactual - Nsafe) Pss

new (tD + 1/k)  
(45) 

In this equation is k=ln(2)/τ where τ is the tissue compartment halftime.  
Assumption 5: The distribution of nuclei in humans is not known. An decaying exponential relation is assumed, 
observed in vitro:  

 
Nactual = N0 exp(-β0 S r0

new / 2kT)  
 
Nsafe = N0 exp(-β0 S r0

min / 2kT)  
(46) 

β0  

VPM constant N0  

Normalization constant S  
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Constant area, occupied by one surfactant molecule in situ k  

Boltzmann constant T  

Absolute temperature  
The decompression criterion can be rewritten:  
 Pss

new = αVcrit / [(Nactual - Nsafe) (tD + 1/k)]  (47) 
where:  
 (Nactual - Nsafe) = N0 [ exp(-β0 S r0

new / 2kT) - exp(-β0 S r0
min / 2kT)]  (48) 

Assumption 6: The exponential arguments in equation are small enough so that they can be expanded. According to [3] 
this approximation is in some question, since the model parameters are not fixed nor well known. The true distribution is 
unknown. According to this assumption equation (48) becomes:  
 (Nactual - Nsafe) ≈ (N0 β0 S r0

min / 2kT) (1 - r0
new/r0

min)  (49) 
Substituting (49) in (47) and rewriting this a bit results in:  
 N0β0S/2kT r0

min ( 1/r0
new - 1/r0

min ) (tD + 1/k) Pss
new - αVcrit (1/r0

new) = 0  (50) 
The radii r0

new and r0
min can now be replaced using the VPM equations (rewriting (30) and (19)):  

 

r0
min = 2(γc - γ) / β0  

 
1/r0

min = γc [ Pss
min - Pcrush (γ/γc) ] / [ 2γ(γc - γ) ]  

 
1/r0

new = γc [ Pss
new - Pcrush (γ/γc) ] / [ 2γ(γc - γ) ]  

(51) 

Pcrush is here Pm-P0. The equations (51) apply to the permeable region. Applying them to the impermeable region results in 
an acceptable error of only 3% for values of Pcrush below 10 bar. Substituting r0

min, 1/r0
min and 1/r0

new in the relations (50) 
by the equations given in (51) results in:  
 N0 (γc - γ)S/(kT) (Pss

new - Pss
min) Pss

new (tD + 1/k) - αVcrit [ Pss
new - Pcrush(γ/γc) ] ≈ 0  (52) 

Rewriting this leads to the quadratic equation:  

 

a Pss
new 2 - b Pss

new + c = 0  
 
a = 1  
 
b = Pss

min + λ γ / [ γc (tD + 1/k) ]  
 
c = (γ/γc)2 λ Pcrush /(tD + 1/k)  

(53) 

Equation (40) is the solution of equation (53), where:  
 λ = α Vcrit γc kT / [γ N0 (γc-γ) S]  (54) 

Parameter values 
The Yount article [3] reports the following parameter values:  

Parameter Value 
γ 17.9 dyn/cm = 0.179 N/m 
γc 257 dyn/cm = 2.57 N/m 
τR 20160 min 
r0

min 0.80 µm 
λ 7500 fsw min = 250 bar min 

Some adaptations to VPM 
In the Yount/Maiken/Baker article [4] VPM is applied to reverse dive profiles (Pss<Pcrush). Some adaptations are made to 
the VPM.  
First, the descent is not assumed to be instantaneous but takes place at a certain rate. During descent gas is loaded into the 
tissue compartments, leading to a smaller Pcrush value than on instantaneous descent (no gas loading). This effects the 
faster tissues more than the slower ones. Using the Schreiner equation one can derive a new, more general version of 
equation (39) for compartment j:  

 Pss
min

j = 2γ(γc - γ) / γc r0
min

j + γ/γc ∆j  
 (55) 

The effects of nuclear regeneration have not been taken into account in this equation. In this equation the set of effective 
crushing pressures ∆j is given by:  

 ∆j = Pcrush (1-QN2) + QN2 Rc/kj [1 - exp(-kj tc)]  
 (56) 

In this equation is QN2 the Nitrogen fraction in the breathing gas mixture and Rc is the crushing change rate of the partial 
Nitrogen pressure. In the case of rapid descent, where in the limit tc approaches 0, Rctc approaches Pcrush and ∆j goes to 
Pcrush. This results in the original equation (19).  
In the Yount/Maiken/Baker article [4] equation (40) has been replaced by:  

 Pss
new = 1/2 [b + (b2 - 4 c) 1/2]  

where  (57) 
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b = Pss
min

j + λ γ / [γc (tD + 1/kj)] - (Ptj
dive - Pm)tD / [2 (tD + 1/kj)]  

 
c = (γ/γc)2 λ Pcrush / (tD + 1/kj) - Pss

min
j (Ptj

dive - Pm)tD / [2 (tD + 1/kj)]  
 

In this equation Ptj
dive denotes the set of compartment tissue tensions. The last terms have been added to b and c, 

compared to equation (40). These terms become zero for saturated, not-metabolizing systems, where Ptj
dive is Pt≈Pm.  
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